A Multivariate and Multistage Medium- and Long-Term Streamflow Prediction Based on an Ensemble of Signal Decomposition Techniques with a Deep Learning Network

Author:

Sibtain Muhammad1ORCID,Li Xianshan1,Saleem Snoober2

Affiliation:

1. Laboratory for Operation and Control of Cascaded Hydropower Station, China Three Gorges University, Yichang 44302, China

2. Department of Economics, National University of Modern Languages, Islamabad 44000, Pakistan

Abstract

The accuracy and consistency of streamflow prediction play a significant role in several applications involving the management of hydrological resources, such as power generation, water supply, and flood mitigation. However, the nonlinear dynamics of the climatic factors jeopardize the development of efficient prediction models. Therefore, to enhance the reliability and accuracy of streamflow prediction, this paper developed a three-stage hybrid model, namely, IVL (ICEEMDAN-VMD-LSTM), which integrated improved complete ensemble empirical mode decomposition with additive noise (ICEEMDAN), variational mode decomposition (VMD), and long short-term memory (LSTM) neural network. Monthly data series of streamflow, temperature, and precipitation in the Swat River Watershed, Pakistan, from January 1971 to December 2015 was used as a case study. Firstly, the correlation analysis and the two-stage decomposition approach were employed to select suitable inputs for the proposed model. ICEEMDAN was employed as a first decomposition stage, to decompose the three data series into intrinsic mode functions (IMFs) and a residual component. In the second decomposition stage, the component of high frequency (IMF1) was decomposed by VMD, as the second decomposition. Afterward, all the components obtained through the correction analysis and the two-stage decomposition approach were predicted by using the LSTM network. Finally, the predicted results of all components were aggregated, to formulate an ensemble prediction for the original monthly streamflow series. The predicted results showed that the performance of the proposed model was superior to the other developed models, in respect of several evaluation benchmarks, demonstrating the applicability of the proposed IVL model for monthly streamflow prediction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3