Experimental Validation of a Highly Damped Deployable Solar Panel Module with a Pogo Pin-Based Burn Wire Triggering Release Mechanism

Author:

Bhattarai Shankar1,Go Ji-Seong1,Kim Hongrae2,Oh Hyun-Ung1ORCID

Affiliation:

1. Space Technology Synthesis Laboratory, Department of Smart Vehicle System Engineering, Chosun University, 309, Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea

2. Soletop Co. Ltd., 409 Expo-ro, Yuseong-gu, Daejeon, Republic of Korea

Abstract

In this present work, a highly damped deployable solar panel module was developed for application in the 3 U CubeSat. The solar panel proposed herein is effective in guaranteeing the structural safety of solar cells under a launch environment owing to the superior damping characteristics achieved using multilayered stiffeners with viscoelastic acrylic tapes. A holding and release action of the solar panel was achieved by a new version of spring-loaded pogo pin-based burn wire triggering mechanism. A demonstration model of high-damping solar panel assembly was fabricated and tested to validate the effectiveness of the design. The holding and release mechanism achieved using a pogo pin was functionally tested through solar panel deployment tests under ambient room temperature and a thermal vacuum environment. The design effectiveness and structural safety of the solar panel module were validated through qualification-level launch and in-orbit environment tests.

Funder

Chosun University

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3