Study of Residual Wall Thickness and Multiobjective Optimization for Process Parameters of Water-Assisted Injection Molding

Author:

Yang Jiangen1ORCID,Yu Shengrui2ORCID,Yu Ming3ORCID

Affiliation:

1. Engineering Science and Technology Department, Shanghai Ocean University, Shanghai 201306, China

2. Mechanical and Electronic Engineering Department, Jingdezhen Ceramic Institute, Jingdezhen 333403, China

3. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China

Abstract

Residual wall thickness is an important indicator for water-assisted injection molding (WAIM) parts, especially the maximization of hollowed core ratio and minimization of wall thickness difference which are significant optimization objectives. Residual wall thickness was calculated by the computational fluid dynamics (CFD) method. The response surface methodology (RSM) model, radial basis function (RBF) neural network, and Kriging model were employed to map the relationship between process parameters and hollowed core ratio, and wall thickness difference. Based on the comparison assessments of the three surrogate models, multiobjective optimization of hollowed core ratio and wall thickness difference for cooling water pipe by integrating design of experiment (DOE) of optimized Latin hypercubes (Opt LHS), RBF neural network, and particle swarm optimization (PSO) algorithm was studied. The research results showed that short shot size, water pressure, and melt temperature were the most important process parameters affecting hollowed core ratio, while the effects of delay time and mold temperature were little. By the confirmation experiments for the best solution resulted from the Pareto frontier, the relative errors of hollowed core ratio and wall thickness are 2.2% and 3.0%, respectively. It demonstrated that the proposed hybrid optimization methodology could increase hollowed core ratio and decrease wall thickness difference during the WAIM process.

Funder

Shanghai Ocean University

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3