A Fused Multidimensional EEG Classification Method Based on an Extreme Tree Feature Selection

Author:

Lin Ruijing12ORCID,Dong Chaoyi12ORCID,Ma Pengfei12ORCID,Ma Shuang12ORCID,Chen Xiaoyan12ORCID,Liu Huanzi12ORCID

Affiliation:

1. College of Electric Power, Inner Mongolia University of Technology, Hohhot 0100801, China

2. Intelligent Energy Technology and Equipment Engineering Research Centre of Colleges and Universities in Inner Mongolia Autonomous Region, Inner Mongolia, Hohhot 010051, China

Abstract

When a brain-computer interface (BCI) is designed, high classification accuracy is difficult to obtain for motor imagery (MI) electroencephalogram (EEG) signals in view of their relatively low signal-to-noise ratio. In this paper, a fused multidimensional classification method based on extreme tree feature selection (FMCM-ETFS) is proposed for discerning motor imagery EEG tasks. First, the EEG signal was filtered by a Butterworth filter for preprocessing. Second, C3, C4, and CZ channels were selected to extract time-frequency domain and spatial domain features using autoregressive (AR), common spatial pattern (CSP), and discrete wavelet transform (DWT). The extracted features were fused for a further feature elimination. Then, the features were selected using three feature selection methods: recursive feature elimination (RFE), principal component analysis method (PCA), and extreme trees (ET). The selected feature vectors were classified using support vector machines (SVM). Finally, a total of twelve subjects’ EEG data from Inner Mongolia University of Technology (IMUT data), the 2nd BCI competition in 2003, and the 4th BCI competition in 2008 were employed to show the effectiveness of this proposed FMCM-ETFS method. The results show that the classification accuracy using the multidimensional fused feature extraction (AR + CSP + DWT) is 3%–20% higher than those using the aforementioned three single feature extractions (AR, CSP, and DWT). Extreme trees (ET), which is a sort of tree-based model method, outperforms RFE and PCA by 1%–9% in term of classification accuracies, when these three methods were applied to the procedure of feature extraction, respectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference29 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3