System Optimization for Temporal Correlated Cognitive Radar with EBPSK-Based MCPC Signal

Author:

Chen Peng1ORCID,Wu Lenan1

Affiliation:

1. School of Information Science and Engineering, Southeast University, Nanjing 210096, China

Abstract

The system optimization is considered in cognitive radar system (CRS) with extended binary phase shift keying- (EBPSK-) based multicarrier phase-coded (MCPC) signal. A novel radar working scheme is proposed to consider both target detection and estimation. At the detection stage, the generalized likelihood ratio test (GLRT) threshold is deduced, and the GLRT detection probability is given. At the estimation stage, an approach based on Kalman filtering (KF) is proposed to estimate target scattering coefficients (TSC), and the estimation performance is improved significantly by exploiting the TSC temporal correlation. Additionally, the optimal waveform is obtained to minimize the mean square error (MSE) of KF estimation. For the practical consideration, iteration algorithms are proposed to optimize the EBPSK-based MCPC signal in terms of power allocation and coding matrix. Simulation results demonstrate that the KF estimation approach can improve the estimation performance by 25% compared with maximum a posteriori MAP (MAP) method, and the KF estimation performance can be further improved by 90% by optimizing the transmitted waveform spectrum. Moreover, by optimizing the power allocation and coding matrix of the EBPSK-based MCPC signal, the KF estimation performances are, respectively, improved by 7% and 8%.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3