A Sparse Bayesian Learning-Based DOA Estimation Method With the Kalman Filter in MIMO Radar

Author:

Liu SongORCID,Tang Lan,Bai Yechao,Zhang Xinggan

Abstract

The direction of arrival (DOA) estimation problem as an essential problem in the radar system is important in radar applications. In this paper, considering a multiple-input and multiple-out (MIMO) radar system, the DOA estimation problem is investigated in the scenario with fast-moving targets. The system model is first formulated, and then by exploiting both the target sparsity in the spatial domain and the temporal correlation of the moving targets, a sparse Bayesian learning (SBL)-based DOA estimation method combined with the Kalman filter (KF) is proposed. Moreover, the performances of traditional sparse-based methods are limited by the off-grid issue, and Taylor-expansion off-grid methods also have high computational complexity and limited performance. The proposed method breaks through the off-grid limit by transforming the problem in the spatial domain to that in the time domain using the movement feature. Simulation results show that the proposed method outperforms the existing methods in the DOA estimation problem for the fast-moving targets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3