Affiliation:
1. School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306, China
2. Department of Mathematics, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
Abstract
In this paper, a mathematical model for large deformation of a cantilever beam subjected to tip-concentrated load is presented. The model is governed by nonlinear differential equations. Large deformation of a cantilever beam has number of applications is structural engineering. Since finding an exact solution to such nonlinear models is difficult task, this paper focuses on developing soft computing technique based on artificial neural networks (ANNs), generalized normal distribution optimization (GNDO) algorithm, and sequential quadratic programming (SQP). The strength of ANN modeling for governing the equation of cantilever beam is exploited by the global search ability of GNDO and further explored by the local search mechanism of SQP. Design scheme is evaluated for different cases depending on variations in dimensionless end-point load
. Furthermore, to validate the effectiveness and convergence of algorithm proposed technique, the results of the differential transformation method (DTM) and exact solutions are compared. The statistical analysis of performance indicators in terms of mean, median, and standard deviations further establishes the worth of ANN-GNDO-SQP algorithm.
Funder
Shanghai DianJi University
Subject
Multidisciplinary,General Computer Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献