Application of Soft Computing Paradigm to Large Deformation Analysis of Cantilever Beam under Point Load

Author:

Cui Yanmei1,Hong Yong1ORCID,Khan Naveed Ahmad2ORCID,Sulaiman Muhammad2ORCID

Affiliation:

1. School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306, China

2. Department of Mathematics, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan

Abstract

In this paper, a mathematical model for large deformation of a cantilever beam subjected to tip-concentrated load is presented. The model is governed by nonlinear differential equations. Large deformation of a cantilever beam has number of applications is structural engineering. Since finding an exact solution to such nonlinear models is difficult task, this paper focuses on developing soft computing technique based on artificial neural networks (ANNs), generalized normal distribution optimization (GNDO) algorithm, and sequential quadratic programming (SQP). The strength of ANN modeling for governing the equation of cantilever beam is exploited by the global search ability of GNDO and further explored by the local search mechanism of SQP. Design scheme is evaluated for different cases depending on variations in dimensionless end-point load ρ . Furthermore, to validate the effectiveness and convergence of algorithm proposed technique, the results of the differential transformation method (DTM) and exact solutions are compared. The statistical analysis of performance indicators in terms of mean, median, and standard deviations further establishes the worth of ANN-GNDO-SQP algorithm.

Funder

Shanghai DianJi University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3