Affiliation:
1. State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
Abstract
By considering the tightening process, a three-dimensional elastic finite element analysis is conducted to explore the mechanism of bolt self-loosening under transverse cyclic loading. According to the geometrical features of the thread, a hexahedral meshing is implemented by modifying the node coordinates based on cylinder meshes and an ABAQUS plug-in is made for parametric modeling. The accuracy of the finite element model is verified and validated by comparison with the analytical and experimental results on torque-tension relationship. And, then, the fastening states acquired by different means are compared. The results show that the tightening process cannot be replaced by a simplified method because its fastening state is different from the real process. With combining the tightening and self-loosening processes, this paper utilizes the relative rotation angles and velocities to investigate the slip states on contact surfaces instead of the Coulomb friction coefficient method, which is used in most previous researches. By contrast, this method can describe the slip states in greater detail. In addition, the simulation result reveals that there exists a creep slip phenomenon at contact surface, which causes the bolt self-loosening to occur even when some contact facets are stuck.
Funder
Ministry of Science and Technology of the People’s Republic of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献