Decision Fusion System for Bolted Joint Monitoring

Author:

Liang Dong1,Yuan Shen-fang2

Affiliation:

1. Department of Aeronautics, College of Physics and Electromechanics, Xiamen University, Xiamen 361005, China

2. The State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Bolted joint is widely used in mechanical and architectural structures, such as machine tools, industrial robots, transport machines, power plants, aviation stiffened plate, bridges, and steel towers. The bolt loosening induced by flight load and environment factor can cause joint failure leading to a disastrous accident. Hence, structural health monitoring is critical for the bolted joint detection. In order to realize a real-time and convenient monitoring and satisfy the requirement of advanced maintenance of the structure, this paper proposes an intelligent bolted joint failure monitoring approach using a developed decision fusion system integrated with Lamb wave propagation based actuator-sensor monitoring method. Firstly, the basic knowledge of decision fusion and classifier selection techniques is briefly introduced. Then, a developed decision fusion system is presented. Finally, three fusion algorithms, which consist of majority voting, Bayesian belief, and multiagent method, are adopted for comparison in a real-world monitoring experiment for the large aviation aluminum plate. Based on the results shown in the experiment, a big potential in real-time application is presented that the method can accurately and rapidly identify the bolt loosening by analyzing the acquired strain signal using proposed decision fusion system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3