Magnetic Tile Surface Defect Detection Methodology Based on Self-Attention and Self-Supervised Learning

Author:

Ling Xufeng1ORCID,Wu Yapeng2ORCID,Ali Rahman3,Zhu Huaizhong1ORCID

Affiliation:

1. Shanghai Normal University Tianhua College AI School, Shanghai, China

2. Key Laboratory of Intelligent Infrared Perception, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China

3. University of Peshawar, Peshawar 19120, Khyber Pakhtunkhwa, Pakistan

Abstract

As the core component of permanent magnet motor, the magnetic tile defects seriously affect the quality of industrial motor. Automatic recognition of the surface defects of the magnetic tile is a difficult job since the patterns of the defects are complex and diverse. The existing defect recognition methods result in difficulty in practical application due to the complicated system structure and the low accuracy of the image segmentation and the target detection for the diversity of the defect patterns. A self-supervised learning (SSL) method, which benefits from its nonlinear feature extraction performance, is proposed in this study to improve the existing approaches. We proposed an efficient multihead self-attention method, which can automatically locate single or multiple defect areas of magnetic tile and extract features of the magnetic tile defects. We also designed an accurate full-connection classifier, which can accurately classify different defects of magnetic tile defects. A knowledge distillation process without labeling is proposed, which simplifies the self-supervised training process. The process of our method is as follows. A feature extraction model consists of standard vision transformer (ViT) backbone, which is trained by contrast learning without labeled dataset that is used to extract global and local features from the input magnetic tile images. Then, we use a full-connection neural network, which is trained by using labeled dataset to classify the known defect types. Finally, we combined the feature extraction model and defect classification model together to form a relatively simple integrated system. The public magnetic tile surface defect dataset, which holds 5 defect categories and 1 nondefect category, is used in the process of training, validating, and testing. We also use online data augmentation techs to increase training samples to make the model converge and achieve high classification accuracy. The experimental results show that the features extracted by the SSL method can get richer and more detailed features than the supervised learning model gets. The composite model reaches to a high testing accuracy of 98.3%, and gains relatively strong robustness and good generalization ability.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference29 articles.

1. Review on the application of surface defect detection;Shockletti;Electronic Technology,2020

2. Study on visual detection method of surface linear defects on micro-magnetic tile;L. B. Zhang;Journal of Optoelectronics - Laser,2019

3. A segmentation method of magnetic tile defect image based on k-means clustering;X. D. Ma;Software Guide,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3