Semianalytical Modelling and 2D Numerical Simulation of Low-Frequency Noise in Advanced N-Channel FDSOI MOSFETs

Author:

Boutchacha T.1,Ghibaudo G.1ORCID

Affiliation:

1. IMEP-LAHC, UGA, Minatec/INPG, BP 257, Grenoble 38016, France

Abstract

Thorough investigations of the low-frequency noise (LFN) in a fully depleted silicon-on-insulator technology node have been accomplished, pointing out on the contribution of the buried oxide (BOX) and the Si-BOX interface to the total drain current noise level. A new analytical multilayer gate stack flat-band voltage fluctuation-based model has been established, and 2D numerical simulations have been carried out to identify the main noise sources and related parameters on which the LFN depends. The increase of the noise at strong inversion could be explained by the access resistance contribution to the 1/f noise. Therefore, considering uncorrelated noise sources in the channel and in the source/drain regions, the total low-frequency noise can simply be obtained by adding to the channel noise the contribution of the excess noise originating from the access region (Δr). Moreover, only two fit parameters are used in this work: the trap volumetric density in the BOX, and the 1/f access noise level originating from the access series resistance, which is assumed to be the same for the front and the back interfaces.

Funder

Centre National de la Recherche Scientifique

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3