On Resolvability Parameters of Some Wheel-Related Graphs

Author:

Yang Bin1,Rafiullah Muhammad2ORCID,Siddiqui Hafiz Muhammad Afzal2ORCID,Ahmad Sarfraz2

Affiliation:

1. Department of Computer Science and Technology, Hefei University, Hefei 230601, Anhui, China

2. Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan

Abstract

LetG=V,Ebe a simple connected graph,wVbe a vertex, ande=uvEbe an edge. The distance between the vertexwand edgeeis given byde,w=mindw,u,dw,v, A vertexwdistinguishes two edgese1,e2Eifdw,e1dw,e2. A setSis said to be resolving if every pair of edges ofGis distinguished by some vertices ofS. A resolving set with minimum cardinality is the basis forG, and this cardinality is the edge metric dimension ofG, denoted byedimG. It has already been proved that the edge metric dimension is an NP-hard problem. The main objective of this article is to study the edge metric dimension of some families of wheel-related graphs and prove that these families have unbounded edge metric dimension. Moreover, the results are compared with the metric dimension of these graphs.

Funder

Major University Science Research Project of Anhui Province

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3