Abstract
<abstract><p>If a subset of vertices of a graph, designed in such a way that the remaining vertices have unique identification (usually called representations) with respect to the selected subset, then this subset is named as a metric basis (or resolving set). The minimum count of the elements of this subset is called as metric dimension. This concept opens the gate for different new parameters, like fault-tolerant metric dimension, in which the failure of any member of the designed subset is tolerated and the remaining subset fulfills the requirements of the resolving set. In the pattern of the resolving sets, a concept was introduced where the representations of edges must be unique instead of vertices. This concept was called the edge metric dimension, and this as well as the previously mentioned concepts belong to the idea of resolvability parameters in graph theory. In this paper, we find all the above resolving parametric sets of a convex polytope $ {F}_{♃} $ and compare their cardinalities.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference33 articles.
1. M. Ahsan, Z. Zahid, S. Zafar, A. Rafiq, M. Sarwar Sindhu, M. Umar, Computing the edge metric dimension of convex polytopes related graphs, J. Math. Comput. Sci., 22 (2021), 174–188. http://doi.org/10.22436/jmcs.022.02.08
2. M. Azeem, M. F. Nadeem, Metric-based resolvability of polycyclic aromatic hydrocarbons, Eur. Phys. J. Plus, 136 (2021), 395. http://doi.org/10.1140/epjp/s13360-021-01399-8
3. J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, et al., On the metric dimension of Cartesian product of graphs, SIAM J. Discrete Math., 21 (2007), 423–441. http://doi.org/10.1137/050641867
4. G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0
5. M. A. Chaudhry, I. Javaid, M. Salman, Fault-tolerant metric and partition dimension of graphs, Utilita Mathematica, 83 (2010), 187–199.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献