A Comparative Study on Drivers’ Stop/Go Behavior at Signalized Intersections Based on Decision Tree Classification Model

Author:

Dong Sheng1,Zhou Jibiao23ORCID

Affiliation:

1. School of Civil and Transportation Engineering, Ningbo University of Technology, Fenghua Rd. #201, Jiangbei District, Ningbo, Zhejiang 315211, China

2. Department of Transportation Engineering, Tongji University, Caoan Rd. #4800, Shanghai 201804, China

3. Intelligent Transport System (ITS) R&D Center, Shanghai Urban Construction Design and Research Institute (Group) Co., Ltd., Shanghai 200082, China

Abstract

The stop/go decisions at signalized intersections are closely related to driving speed during signal change intervals. The speed during stop/go decision-making has a significant influence on the dilemma area, resulting in changes of stop/go decisions and high complexity of the decision-making process. Considering that traffic delays and vehicle exhaust pollution are mainly caused by queuing at intersections, the stop-line passing speed during the signal change interval will affect both vehicle operation safety and the atmospheric environment. This paper presents a comparative study on drivers’ stop/go behaviors when facing a transition signal period consisting of 3 s green flashing light (FG) and 3 s yellow light (Y) at rural high-speed intersections and urban intersections. For this study, 1,459 high-quality vehicle trajectories of five intersections in Shanghai during the transition signal period were collected. Of these five intersections, three are high-speed intersections with a speed limit of 80 km/h, and the other two are urban intersections with a speed limit of 50 km/h. Trajectory data of these vehicle samples were statistically analyzed to investigate the general characteristics of potential influencing factors, including the instantaneous speed and the distance to the intersection at the start of FG, the vehicle type, and so on. Decision Tree Classification (DTC) models are developed to reveal the relationship between the drivers’ stop/go decisions and these possible influencing factors. The results indicate that the instantaneous speed of FG onset, the distance to the intersection at the start of FG, and the vehicle type are the most important predictors for both types of intersections. Besides, a DTC model can offer a simple way of modeling drivers’ stopping decision behavior and produce good results for urban intersections.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3