Determining E-Bike Drivers’ Decision-Making Mechanisms during Signal Change Interval Using the Hidden Markov Driving Model

Author:

Dong Sheng1ORCID,Zhou Jibiao12ORCID,Zhang Shuichao1ORCID

Affiliation:

1. School of Civil and Transportation Engineering, Ningbo University of Technology, Fenghua Rd. #201, Ningbo 315211, China

2. Department of Transportation Engineering, Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, No. 4800, Cao’an Road, Shanghai 201804, China

Abstract

Rapidly increasing e-bike use in China has resulted in new traffic problems including rising accident rates at intersections related to e-bike drivers’ decision-making during multiple signal phases. Traditional one-step decision models (such as GHM) lack randomness and cannot adequately model e-bike drivers’ complex behavior. Therefore, this study used a Hidden Markov Driving Model (HMDM) to analyze e-bike drivers’ decision-making process based on high-resolution trajectory data. Video data were collected at three intersections in Shanghai and processed for use in the HMDM model. Five decision types (pass, stop, stop-pass, pass-stop, and multiple) composed of speed and acceleration/deceleration information were defined and used to analyze the impact of flashing green signals on e-bike drivers’ behavior and decision-making processes. Approximately 40% of drivers made multiple decisions during the flashing green and yellow signal phases, in contrast to the traditional GHM model assumption that drivers only make one decision. Distance from stop-line had the most obvious influence on the number of decisions. The use of flashing green signals nearly eliminated the dilemma zone for e-bike drivers but enlarged the option zone, inducing more stop/pass decisions. HMDM can be applied to improve the accuracy of traffic simulation, the fine design of traffic signals, the stability analysis of traffic control schemes, and so on.

Funder

Philosophy and Social Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3