Automatic Capture Processing Method of Basketball Shooting Trajectory Based on Background Elimination Technology

Author:

Fan Hongyan1ORCID,Hu Youhong1,Zhang Jianfeng1

Affiliation:

1. Department of Physical Education, Gansu Agricultural University, Lanzhou 730070, China

Abstract

The analysis and prediction of the shooting trajectory can be used to partially correct the shooting. The traditional automatic basketball shooting trajectory capture algorithm has a low capture accuracy and a long capture time, and thus is incapable of displaying the shooting trajectory in real time. To address this issue, this study proposes an automatic basketball shooting trajectory capture algorithm based on background elimination. The image of the basketball shooting trajectory is captured using imaging technology; the image is then preprocessed in four steps: binary erosion, binary expansion, closing operation, and opening operation to create a smooth image. After removing the background from the preprocessed image using the background difference method, the edge contour features are extracted, the candidate target area is set based on the extraction result, and a diagonal matrix reflecting the length and width of the trajectory target is introduced to calculate the probability of the color of the area in the shooting trajectory, thereby characterizing the trajectory. The target’s size changes in two directions to capture the basketball shooting trajectory automatically. The algorithm’s simulation results indicate that it has a higher accuracy and a shorter capture time.

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Reference18 articles.

1. Prediction of Shooting trajectory of tuna purse seine fishing;L. Chun-Woo;Fisheries Research,2018

2. Vehicle positioning and trajectory tracking by infrared signal-direction discrimination for short-range vehicle-to-infrastructure communication systems;W. Y. Shieh;IEEE Transactions on Intelligent Transportation Systems,2018

3. Trajectory tracking control of Skid-Steered Mobile Robot based on adaptive Second Order Sliding Mode Control

4. Research on human motion image recognition method under high intensity exercise;H. Zhang;Computer Simulation,2019

5. Spatial trajectory tracking of human motion using inertial sensor;Q. Ma;Application of Single Chip Microcomputer and Embedded System,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3