Investigation of Heat Transfer from Convective and Radiative Stretching/Shrinking Rectangular Fins

Author:

Din Zia Ud1ORCID,Ali Amir1ORCID,Ullah Sharif1,Zaman Gul1,Shah Kamal12ORCID,Mlaiki Nabil2ORCID

Affiliation:

1. Department of Mathematics, University of Malakand, Chakdara, Lower Dir, Khyber Pakhtunkhwa, Pakistan

2. Department of Mathematics and Sciences, Prince Sultan University, P.O. Box 66833, 11586 Riyadh, Saudi Arabia

Abstract

We study the efficiency of shrinking/stretching radiative fins to improve heat transfer rate. To evaluate the competence of suggested fins, the influence of shrinking/stretching, thermogeometric parameters, surface temperature, convection conduction, radiation conduction, and Peclet number is investigated. The problem is solved numerically using a shooting method. To validate the numerical solution, the results are compared with the solution of a differential transform method. Temperature distribution increases with a rise in convection and radiation conduction parameters when Peclet number, stretching/shrinking, ambience, and surface temperatures are raised. The temperature of the fin’s tip increases as ambient temperature, Peclet number, and surface temperature increase, and decreases for enhanced radiation and convection conduction parameters. Radiation and convection cause the efficiency of the fin to increase for shrinking and decrease for stretching, which shows an important role in heat transfer analysis in mechanical engineering. The formulated model is also studied analytically, and the result is compared to numerical solution, which shows qualitatively good agreement.

Funder

Prince Sultan University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3