Comparative numerical analysis of magnetized rectangular and trapezoidal fins

Author:

Ullah Sharif1,Din Zia Ud2,Ali Amir1ORCID

Affiliation:

1. Department of Mathematics University of Malakand Chakdara Dir(L) Totakan Khyber Pakhtunkhwa Pakistan

2. Higher Education Department Totakan Khyber Pakhtunkhwa Pakistan

Abstract

AbstractFins are extended surfaces that are designed to dissipate heat from hot sources to their surroundings. The different profiles of fins are used on the equipment surface to improve heat transfer. Fins are extensively used in refrigeration, solar panels, superheaters, electric equipment, automobile parts, combustion engines, and electrical equipment. On the basis of these applications, we study the thermal performances of magnetized convective–radiative‐rectangular fins with magnetized trapezoidal fins with internal heat generation. The shooting technique is used to numerically study the suggested model. It is revealed that magnetized trapezoidal fins transfer more heat than magnetized rectangular fins. It is also revealed that magnetized trapezoidal fins have higher thermal transfer competence than magnetized rectangular fins. When thermal conductivity, radiation–conduction number, and convection–conduction number increase, the fin's efficiency increases. In addition, a Hartmann number indicating the magnetic effect is found to improve heat transfer from the fins. Increasing the magnetism parameter from 0.1 to 0.3 reduced temperature by approximately 4.5%, changing internal heat generation from 0.1 to 0.5 increased temperature distribution by approximately 16%, and changing the Peclet number from 0.1 to 0.3 increased temperature distribution by approximately 15%. The effect of heat transfer coefficient, thermal radiation–conduction and convection–conduction, and dimensionless radiation are also investigated on the performance of the fins.

Publisher

Wiley

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

Reference50 articles.

1. Investigation of the Stretching/Shrinking of a Convective-Radiative Radial Fin

2. Numerical analysis of radiation effect on heat flow through fin of rectangular profile;Mogaji TS;Am J Eng Res (AJER),2017

3. Experimental testing of the heat exchanger with star-shaped fins

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3