Flexural Vibration Analysis of Nonuniform Double-Beam System with General Boundary and Coupling Conditions

Author:

Chen Lujun12,Xu Deshui3ORCID,Du Jingtao3ORCID,Zhong Chengwen1ORCID

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. China Aerodynamics Research and Development Center, Mianyang 621000, China

3. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

In this paper, an analytical modeling approach for the flexural vibration analysis of the nonuniform double-beam system is proposed via an improved Fourier series method, in which both types of translational and rotational springs are introduced to account for the mechanical coupling on the interface as well as boundary restraints. Energy formulation is employed for the dynamic description of the coupling system. With the aim to treat the varying thickness across the beam in a unified pattern, the relevant variables are all expanded into Fourier series. Supplementary terms with the smoothed characteristics are introduced to the standard Fourier series for the construction of displacement admissible function for each beam. In conjunction with the Rayleigh–Ritz procedure, the transverse modal characteristics of nonuniform double-beam system can be obtained by solving a standard eigenvalue problem. Instead of solving the certain value of nonideal boundary conditions, the continuous spring stiffnesses of the boundary conditions are considered, and the rotational restrains are introduced in the coupling beam interface. Numerical results are then presented to demonstrate the reliability of the current model and study the influence of various parameters, such as taper ratio, boundary, and coupling strength on the free vibration characteristics, with the emphasis put on the rotational restraining coefficients on the beam interface. This work can provide an efficient modeling framework for the vibration characteristics study of the complex double-beam system, especially with arbitrary varying thickness and coupling stiffness.

Funder

Fok Ying Tong Education Foundation

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3