Deformation and Stress Analysis of Pile-Supported Immersed Tunnels under Seismic Loads

Author:

Zhuang Yan12,Fan Hu1,Hu Shunlei2,Chen Zhi1

Affiliation:

1. School of Civil, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China

2. Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, School of Civil Engineering, Southeast University, Nanjing 210096, China

Abstract

The stress and deformation of pile-supported immersed tunnels under seismic loads is a critical issue in tunnel design. This paper utilizes ABAQUS (version 2020) finite element software to analyze the seismic load response of the sand compaction pile-immersed tunnel–seawater pressure (SIS) system, which is verified by a physical model. The study shows that the suppression effect of the seawater on the vertical frequency of the tunnel increases with depth. When the replacement rate of the piled foundation reaches 50%, the deformation of the tunnel “H-shaped” structures increases, which also changes the vertical frequency of the tunnel. However, the presence of the suppression effect causes resonance injury at the far end of the tunnel from the earthquake source, resulting in a shift of the peak stress point. It was also found that seawater pressure affects the resistance–deflection (p-y) at the tip of the pile more than at the end of the pile. The slenderness ratio (γ) of the pile affects the p-y value at the end of the pile more than at the tip of the pile. The connection between the piled foundation and the tunnel is most stable when γ is in the range of 9.25 to 15.

Funder

National Natural Science Foundation for General Program of China

National Science Foundation for Excellent Young Scholars of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3