Mathematical Analysis of the Role of HIV/HBV Latency in Hepatocytes

Author:

Nampala Hasifa1ORCID,Jablonska-Sabuka Matylda2ORCID,Singull Martin3ORCID

Affiliation:

1. Kyambogo University, Kampala, Uganda

2. Lappeenranta-Lahti University of Technology, Finland

3. Linköping University, Sweden

Abstract

The biggest challenge of treating HIV is rampant liver-related morbidity and mortality. This is, to some extent, attributed to hepatocytes acting as viral reservoirs to both HIV and HBV. Viral reservoirs harbour latent provirus, rendering it inaccessible by combinational antiretroviral therapy (cART) that is specific to actively proliferating virus. Latency reversal agents (LRA) such as Shock and kill or lock and block, aiming at activating the latently infected cells, have been developed. However, they are CD4+ cell-specific only. There is evidence that the low replication level of HIV in hepatocytes is mainly due to the latency of the provirus in these cells. LRA are developed to reduce the number of latently infected cells; however, the impact of the period viral latency in hepatocytes especially, during HIV/HBV coinfection, needs to be investigated. Viral coinfection coupled with lifelong treatment of HIV/HBV necessitates investigation for the optimal control strategy. We propose a coinfection mathematical model with delay and use optimal control theory to analyse the effect of viral latency in hepatocytes on the dynamics of HIV/HBV coinfection. Analytical results indicate that HBV cannot take a competitive exclusion against HIV; thus, the coinfection endemic equilibrium implies chronic HBV in HIV-infected patients. Numerical and analytical results indicate that both HIV and HBV viral loads are higher with longer viral latency period in hepatocytes, which indicates the need to upgrade LRA to other non-CD4+ cell viral reservoirs. Higher viral load caused by viral latency coupled with the effects of cART partly explains why liver-related complications are the leading cause of mortality in HIV-infected persons.

Funder

Makerere University

Publisher

Hindawi Limited

Subject

Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3