Modeling the Effect of Vaccination and Treatment on the Transmission Dynamics of Hepatitis B Virus and HIV/AIDS Coinfection

Author:

Endashaw Engida Endriyas1ORCID,Mekonnen Temesgen Tibebu1

Affiliation:

1. Department of Mathematics, Debre Berhan University, Debre Berhan, Ethiopia

Abstract

Hepatitis B and HIV/AIDS coinfections are common globally due to their similar mode of transmission. Since HIV infection modifies the course of HBV infection by increasing the rate of chronicity, prolonging HBV viremia, and increasing liver disease-associated deaths, individuals with coinfection of both diseases have a higher tendency of developing cirrhosis of the liver, higher levels of HBV DNA, reduced rate of clearance of the hepatitis B e antigen (HBeAg), and more likely to die than an individual with a single infection. This nature of HBV-HIV/AIDS coinfection motivated us to conduct this study. In this paper, we proposed and rigorously analyzed a deterministic mathematical model with the aim of investigating the effect of vaccination against hepatitis B virus and treatment for all infections on the transmission dynamics of HBV-HIV/AIDS coinfection in a population. We proved that the solutions of the submodels and the coinfection model are positive and bounded. The models are studied qualitatively using the stability theory of differential equations, and the effective reproduction numbers of the models are derived using the next generation matrix method. Stability of the equilibria of the submodels and the coinfection model is analyzed using Routh-Hurwitz criteria. The disease-free and endemic equilibria of the submodels and the coinfection model are computed, and both local and global asymptotic stability conditions for those equilibria are discussed. We performed a sensitivity analysis to illustrate the influence of different parameters on the effective reproduction number of HBV-HIV/AIDS coinfection model, and we identified the most sensitive parameters are ω B and ω H , which are the effective contact rates for HBV and HIV transmission, respectively. The numerical simulation of the model is done using MATLAB, and the findings from the simulations are discussed. It is observed that if the vaccination and treatment rates are increased, then the number of individuals susceptible to both infections and HBV-HIV/AIDS coinfection decreases and even falls to zero over time. Hence, it is concluded that vaccination against hepatitis B virus infection, treatment of hepatitis B and HIV/AIDS infections, and HBV-HIV/AIDS infection at the highest possible rate is very essential to control the spread of HBV-HIV/AIDS coinfection as an important public health problem.

Publisher

Hindawi Limited

Subject

Applied Mathematics

Reference36 articles.

1. Hepatitis B Virus: Advances in Prevention, Diagnosis, and Therapy

2. Stochastic and Monte Carlo simulation for the spread of thehepatitis B;I. A. Moneim;Australian Journal of Basic and Applied Sciences,2009

3. Innate immune responses in hepatitis B virus (HBV) infection

4. Simulation of a mathematical model of hepatitis B virus transmission dynamics in the presence of vaccination and treatment;A. R. Kimbir;Mathematical Theory and Modeling,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3