The Adaptive Analysis of Shock Signals on the Basis of Improved Morlet Wavelet Clusters

Author:

Yang Haikun1ORCID,Pan Hong-Xia2

Affiliation:

1. School of Mechatronics Engineering, North University of China, Taiyuan, China

2. School of Mechanical and Power Engineering, North University of China, Taiyuan, China

Abstract

Morlet wavelets do not satisfy the permissibility condition of wavelet analysis, and there are therefore no inverse transformations for Morlet wavelet transforms. In this paper, we put forward the Yang and Pan transform (YPT), which is an adaptive discrete analysis method for shock signals. First, we improved the Morlet wavelet so that the centre and radius of the frequency window can be easily adjusted in the frequency domain. Second, we proposed the extremum frequency concept and analysed the extremum situation of the improved Morlet wavelet. Third, combining the improved Morlet wavelet and extremum frequency, we advanced the theory of the YPT, which does not need to satisfy the permissibility condition. We then continued by using a smoothing operator that can smooth the potentially distorted signal reconstructed after being analysed by the YPT and filtered by using the threshold filtering theory. This operator proved to be simple and efficient. Finally, a noisy signal was reconstructed after being analysed and filtered using the YPT and threshold filtering, respectively, to verify the validity of the theory, and the YPT was compared with the discrete wavelet transform (DWT). As a supplement to the theory in engineering, the shock signals about a gun automatic mechanism were also analysed using the theory in this paper. Good results were obtained, thereby demonstrating that the YPT can be helpful to further extract the features of shock signals in pattern recognition and fault diagnosis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3