Fault Diagnosis of Piezoelectric Sensor Patches for Vibration Control Based on Multifeature Fusion and Improved SVM

Author:

Ma Tian-bing12ORCID,Qing Zhou1,Fei Du1,Jian Liu1

Affiliation:

1. College of Mechanical Engineering, Anhui University of Science and Technology, Anhui Huainan 232001, China

2. Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Anhui University of Science and Technology, Huainan 232001, China

Abstract

The fault diagnosis of piezoelectric sensor patches is very important for the stability of the vibration control system and fault-tolerant control technology. In order to improve the accuracy of fault self-diagnosis of piezoelectric sensor patches, singular value decomposition (SVD) and Hilbert marginal spectrum method are proposed to extract multiple features of each IMF component and conduct feature fusion, and a support vector machine (SVM) based on particle swarm optimization (PSO) is designed for fault identification of different eigenvalues. In the experiment, the broken and degumming piezoelectric patches are simulated. Firstly, under the excitation of the square wave signal with no noise signal, when the SVD value and the maximum amplitude of Hilbert marginal spectrum are used as the fusion eigenvalue together, the diagnostic results show that the recognition accuracy can reach 95%, compared with the recognition accuracy of 70% and 80%, respectively, when the two are used as eigenvalues alone; the recognition result under fusion eigenvalue is obviously better than that of the latter. Secondly, in order to highlight the effectiveness of this method, the aforementioned experiment is conducted under the excitation of the square wave signal interfered by 0.5 dBW–1 dBW noise signal. The experimental results show that the fault recognition of the fused eigenvalue under different noise intensity signals is still superior to that of the single eigenvalue.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3