Low-Computational Cost Stitching Method in a Three-Eyed Endoscope

Author:

Mamone Virginia12ORCID,Condino Sara12,Cutolo Fabrizio12,Tamadon Izadyar3,Menciassi Arianna3ORCID,Murzi Michele4,Ferrari Mauro25ORCID,Ferrari Vincenzo12ORCID

Affiliation:

1. Information Engineering Department, University of Pisa, Pisa 56122, Italy

2. EndoCAS Center for Computer-Assisted Surgery, Pisa 56124, Italy

3. Sant’Anna School of Advanced Studies, Pisa 56127, Italy

4. Department of Adult Cardiac Surgery, G. Pasquinucci Heart Hospital, Gabriele Monasterio Foundation, Massa 54100, Italy

5. Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy

Abstract

Aortic valve replacement is the only definitive treatment for aortic stenosis, a highly prevalent condition in elderly population. Minimally invasive surgery brought numerous benefits to this intervention, and robotics recently provided additional improvements in terms of telemanipulation, motion scaling, and smaller incisions. Difficulties in obtaining a clear and wide field of vision is a major challenge in minimally invasive aortic valve surgery: surgeon orientates with difficulty because of lack of direct view and limited spaces. This work focuses on the development of a computer vision methodology, for a three-eyed endoscopic vision system, to ease minimally invasive instrument guidance during aortic valve surgery. Specifically, it presents an efficient image stitching method to improve spatial awareness and overcome the orientation problems which arise when cameras are decentralized with respect to the main axis of the aorta and are nonparallel oriented. The proposed approach was tested for the navigation of an innovative robotic system for minimally invasive valve surgery. Based on the specific geometry of the setup and the intrinsic parameters of the three cameras, we estimate the proper plane-induced homographic transformation that merges the views of the operatory site plane into a single stitched image. To evaluate the deviation from the image correct alignment, we performed quantitative tests by stitching a chessboard pattern. The tests showed a minimum error with respect to the image size of 0.46 ± 0.15% measured at the homography distance of 40 mm and a maximum error of 6.09 ± 0.23% at the maximum offset of 10 mm. Three experienced surgeons in aortic valve replacement by mini-sternotomy and mini-thoracotomy performed experimental tests based on the comparison of navigation and orientation capabilities in a silicone aorta with and without stitched image. The tests showed that the stitched image allows for good orientation and navigation within the aorta, and furthermore, it provides more safety while releasing the valve than driving from the three separate views. The average processing time for the stitching of three views into one image is 12.6 ms, proving that the method is not computationally expensive, thus leaving space for further real-time processing.

Funder

Region of Tuscany

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3