Affiliation:
1. School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
Abstract
This paper proposed a novel anomaly detection (AD) approach of high-speed train images based on convolutional neural networks and the Vision Transformer. Different from previous AD works, in which anomalies are identified with a single image using classification, segmentation, or object detection methods, the proposed method detects abnormal difference between two images taken at different times of the same region. In other words, we cast anomaly detection problem with a single image into a difference detection problem with two images. The core idea of the proposed method is that the “anomaly” commonly represents an abnormal state instead of a specific object, and this state should be identified by a pair of images. In addition, we introduced a deep feature difference AD network (AnoDFDNet) which sufficiently explored the potential of the Vision Transformer and convolutional neural networks. To verify the effectiveness of the proposed AnoDFDNet, we gathered three datasets, a difference dataset (Diff dataset), a foreign body dataset (FB dataset), and an oil leakage dataset (OL dataset). Experimental results on the above datasets demonstrate the superiority of the proposed method. In terms of the F1-score, the AnoDFDNet obtained 76.24%, 81.04%, and 83.92% on Diff dataset, FB dataset, and OL dataset, respectively.
Funder
Science and Technology Program of Sichuan
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Reference41 articles.
1. Deep learning for anomaly detection: a survey;C. Raghavendra,2019
2. Deep Learning for Anomaly Detection
3. A Unifying Review of Deep and Shallow Anomaly Detection
4. Fraud detection system: A survey
5. Real-time illegal parking detection system based on deep learning;X. M. Xie
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献