The Influence of Injected Fluids on Microscopic Pore Structures in the Intersalt Dolomitic Shale Oil Reservoirs

Author:

Zhou Tong1,Yan Wei2ORCID,Su Jianzheng1,Tang Xianglu2,Tian Hao2,Li Wenbo2,Wang Kongyang2,Sun Ting2ORCID,Wang Ruyue1,Zhang Rusheng1,Niu Jun1

Affiliation:

1. Research Institute of Petroleum Exploration and Development of SINOPEC, Beijing 100083, China

2. China University of Petroleum-Beijing, Beijing 102249, China

Abstract

Given their low porosity and permeability, intersalt dolomitic shale oil reservoirs need to be developed via large-scale hydraulic fracturing to achieve economic effects. However, various lithologies and salt materials make these reservoirs vulnerable to salt mineral dissolution and recrystallization and salt plugging during development. This study investigated the variation rules of pore structures, porosity, and permeability of intersalt dolomitic shale oil reservoirs under the influence of hydraulic fracturing fluid. Correspondingly, a series of experiments (i.e., high-temperature and high-pressure soaking experiments, focused ion beam scanning helium ion microscope analyses, and porosity and pulse permeability tests) is performed on the Qian 34-10 rhythmic intersalt dolomitic shales. Results show that distilled water dissolves the salt crystals inside the matrix pores to improve the reservoir permeability. However, the distilled water-rock interaction will cause the massive migration of salt minerals. By contrast, the supercritical CO2 can disperse salt particles, dredge the channels, and enlarge pores by expansion, but it has an overall weak capability of changing the pore structure and matrix permeability. To simulate the supercritical CO2 composite fracturing, the mixed solution of supercritical CO2 and distilled water favors the salt dissolution effect in the water-based fracturing fluid and recovery enhancement by CO2. This solution can remarkably improve the reservoir porosity and permeability and avoid massive salt mineral migration and salt crystallization damage. This study is theoretically and practically important to the effective and enhanced development of intersalt dolomitic shale oil reservoirs.

Funder

Major National Science and Technology Projects of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3