CMMCSegNet: Cross-Modality Multicascade Indirect LGE Segmentation on Multimodal Cardiac MR

Author:

Wang Yu1ORCID,Zhang Jianping1ORCID

Affiliation:

1. School of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105, China

Abstract

Since Late-Gadolinium Enhancement (LGE) of cardiac magnetic resonance (CMR) visualizes myocardial infarction, and the balanced-Steady State Free Precession (bSSFP) cine sequence can capture cardiac motions and present clear boundaries; multimodal CMR segmentation has played an important role in the assessment of myocardial viability and clinical diagnosis, while automatic and accurate CMR segmentation still remains challenging due to a very small amount of labeled LGE data and the relatively low contrasts of LGE. The main purpose of our work is to learn the real/fake bSSFP modality with ground truths to indirectly segment the LGE modality of cardiac MR by using a proposed cross-modality multicascade framework: cross-modality translation network and automatic segmentation network, respectively. In the segmentation stage, a novel multicascade pix2pix network is designed to segment the fake bSSFP sequence obtained from a cross-modality translation network. Moreover, we propose perceptual loss measuring features between ground truth and prediction, which are extracted from the pretrained vgg network in the segmentation stage. We evaluate the performance of the proposed method on the multimodal CMR dataset and verify its superiority over other state-of-the-art approaches under different network structures and different types of adversarial losses in terms of dice accuracy in testing. Therefore, the proposed network is promising for Indirect Cardiac LGE Segmentation in clinical applications.

Funder

Natural Science Foundation of Hunan Province

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3