1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2281 (2012)
2. British Heart Foundation: CVD Statistics - BHF UK Factsheet (CVD) (2016)
3. Dall’Armellina, E., Karia, N., Lindsay, A.C., Karamitsos, T.D., Ferreira, V., Robson, M.D., Kellman, P., Francis, J.M., Fofar, C., Prendergast, B.D., Banning, A.P., Channon, K.M., Kharbanda, R.K., Neubauer, S., Choudhury, R.P.: Dynamic changes of edema and late gadolinium enhancement after acute myocardial infarction and their relationship to functional recovery and salvage index. Circ.: Cardiovasc. Imaging 4(3), 228–236 (2011)
4. Hsu, L.Y., Ingkanisorn, W.P., Kellman, P., Aletras, A.H., Arai, A.E.: Quantitative myocardial infarction on delayed enhancement MRI. Part II: clinical application of an automated feature analysis and combined thresholding infarct sizing algorithm. J. Magn. Reson. Imaging 23(3), 309–314 (2006)
5. Irving, B., et al.: maskSLIC: regional superpixel generation with application to local pathology characterisation in medical images, pp. 1–7 (2016).
http://arxiv.org/abs/1606.09518