A Community-Based Approach for Link Prediction in Signed Social Networks

Author:

Shahriary Saeed Reza1,Shahriari Mohsen2,MD Noor Rafidah1

Affiliation:

1. Department of Computer System & Technology, Faculty of Computer Science & Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia

2. Advanced Community and Information System, RWTH Aachen University, Ahornstraße 55, 52056 Aachen, Germany

Abstract

In signed social networks, relationships among nodes are of the types positive (friendship) and negative (hostility). One absorbing issue in signed social networks is predicting sign of edges among people who are members of these networks. Other than edge sign prediction, one can define importance of people or nodes in networks via ranking algorithms. There exist few ranking algorithms for signed graphs; also few studies have shown role of ranking in link prediction problem. Hence, we were motivated to investigate ranking algorithms availed for signed graphs and their effect on sign prediction problem. This paper makes the contribution of using community detection approach for ranking algorithms in signed graphs. Therefore, community detection which is another active area of research in social networks is also investigated in this paper. Community detection algorithms try to find groups of nodes in which they share common properties like similarity. We were able to devise three community-based ranking algorithms which are suitable for signed graphs, and also we evaluated these ranking algorithms via sign prediction problem. These ranking algorithms were tested on three large-scale datasets: Epinions, Slashdot, and Wikipedia. We indicated that, in some cases, these ranking algorithms outperform previous works because their prediction accuracies are better.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of link evolution using community detection in social network;Computing;2022-01-07

2. Community-guided link prediction in multiplex networks;Journal of Informetrics;2021-11

3. LPbyCD: a new scalable and interpretable approach for Link Prediction via Community Detection in bipartite networks;Applied Network Science;2021-09-27

4. Edge-centric multi-view network representation for link mining in signed social networks;Expert Systems with Applications;2021-05

5. Basketball lineup performance prediction using network analysis;Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining;2019-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3