Abstract
AbstractMany aspects from real life with bi-relational structure can be modeled as bipartite networks. This modeling allows the use of some standard solutions for prediction and/or recommendation of new relations between objects in such networks. In this work, we combine an existing bipartite local models method with approaches for link prediction from communities to address the link prediction problem in this type of networks. The motivation of this work stems from the importance of an application task, drug–target interaction prediction. Searching valid drug candidates for a given biological target is an essential part of modern drug development. We model the problem as link prediction in a bipartite multi-layer network, which helps to aggregate different sources of information into one single structure and as a result improves the quality of link prediction. We adapt existing community measures for link prediction to the case of bipartite multi-layer networks, propose alternative ways for exploiting communities, and show experimentally that our approach is competitive with the state-of-the-art. We also demonstrate the scalability of our approach and assess interpretability. Additional evaluations on data of a different origin than drug–target interactions demonstrate the genericness of the proposed approach.
Funder
Doctoral Program of Normandy region
Université de Caen Normandie
Université de Rouen
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Computer Networks and Communications,Multidisciplinary
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献