Analysis of Dynamic Characteristics for a Rotor System with Pedestal Looseness

Author:

Ma Hui1,Zhao Xueyan1,Teng Yunnan1,Wen Bangchun1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110819, China

Abstract

This paper presents a finite element model of a rotor system with pedestal looseness stemming from a loosened bolt and analyzes the effects of the looseness parameters on its dynamic characteristics. When the displacement of the pedestal is less than or equal to the looseness clearance, the motion of the rotor varies from period-one through period-two and period-three to period-five with the decreasing of stiffness of the non-loosened bolts. The similar bifurcation phenomenon can be also observed during the increasing process of the rotational speed. But the rotor motion is from period-six through period-three to period-four with the decreasing of the foundation stiffness. When the stiffness of the foundation is small and the displacement of pedestal is greater than the looseness clearance, the response of the rotor exhibits period-one and high order harmonic components with the decreasing of looseness clearance, such as 2X, 3X etc. However, when the stiffness of the foundation is great, the spectrum of the response of the rotor will be from combined frequency components to the continuous spectrum with the decreasing of the looseness clearance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3