New Current-Mode Integrated Ternary Min/Max Circuits without Constant Independent Current Sources

Author:

Moradi Mona1,Faghih Mirzaee Reza2,Navi Keivan3

Affiliation:

1. Department of Computer Engineering, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran

2. Department of Computer Engineering, Islamic Azad University, Shahr-e-Qods Branch, Tehran 37541-374, Iran

3. Faculty of Electrical and Computer Engineering, Shahid Beheshti University, G.C., Tehran 1983963113, Iran

Abstract

Novel designs of current-mode Ternary minimum (AND) and maximum (OR) are proposed in this paper based on Carbon NanoTube Field Effect Transistors (CNTFET). First, these Ternary operators are designed separately. Then, they are combined together in order to generate both outputs concurrently in an integrated design. This integration results in the elimination of common parts when both functions are required at the same time. The third proposed current-mode integrated circuit generates both ternary operators with the usage of only 30 transistors. The new designs are composed of three main parts: (1) the part which converts current to voltage; (2) threshold detectors; and (3) the parallel paths through which the output current flows. Unlike the previously presented structure, there is no need for any constant current source within the new designs. This elimination leads to less static power dissipation. The second proposed current-mode segregated Ternary minimum operates 43% faster and consumes 40% less power in comparison with a previously presented structure.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3