Toxicity of DON on GPx1-Overexpressed or Knockdown Porcine Splenic Lymphocytes In Vitro and Protective Effects of Sodium Selenite

Author:

Ren Zhihua1,Chen Changhao1,Fan Yu1,Chen Chaoxi2,He Hongyi1,Wang Xuemei1,Zhang Zhuo1,Zuo Zhicai1ORCID,Peng Guangneng1,Hu Yanchun1,Xu Zhiwen1ORCID,Tao Siyi1,Mao Xinru1,Deng Junliang1ORCID

Affiliation:

1. College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China

2. College of Life Since and Technology, Southwest Minzu University, Chengdu, Sichuan 610041, China

Abstract

Deoxynivalenol (DON) is a common contaminant of grain worldwide and is often detected in the human diet and animal feed. Selenium is an essential trace element in animals. It has many biological functions. The role of selenium in the body is mainly orchestrated by selenoprotein. Glutathione peroxidase (GPx) also exists widely in the body and has attracted much attention due to its high antioxidant capacity. In order to explore the effect of the GPx1 gene on toxicity of DON, in this study, we overexpressed or knockdown GPx1 in porcine splenic lymphocytes, then added different concentrations of DON (0.1025, 0.205, 0.41, and 0.82 μg/mL) and sodium selenite (2 μmol/L) to the culture system. Using various techniques, we detected antioxidant function, free radical content, cell apoptosis, and methylation-related gene expression to explore the effect of GPx1 expression on DON-induced cell damage. We also explored whether selenium can antagonize the toxicity of DON in these two cell models and revealed the protective effect of sodium selenite on DON-induced cell damage in GPx1-overexpressing or knockdown splenic lymphocytes. Finally, our findings revealed the following: (1) GPx1 can regulate the antioxidant capacity, apoptosis rate, and expression of DNA methylation-related genes in pig splenic lymphocytes. (2) Na2SeO3 (2 μmol/L) can regulate the antioxidant capacity, apoptosis rate, and expression of DNA methylation-related genes in pig splenic lymphocytes, and this effect is more significant in GPx1-overexpressing cells than in GPx1-knockdown cells. (3) DON can cause oxidative damage, apoptosis, and methylation injury in GPx1-overexpressing or knockdown pig splenic lymphocytes in a concentration-dependent manner. (4) Na2SeO3 (2 μmol/L) can antagonize the toxic effect of DON on GPx1-overexpressing or knockdown pig splenic lymphocytes. Our findings may have important implications for food/feed safety, human health, and environmental protection.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3