Abstract
Deoxynivalenol (DON) is a type of mycotoxin that threatens human and livestock health. Right open reading frame kinase 2 (RIOK2) is a kinase that has a pivotal function in ribosome maturation and cell cycle progression. This study aims to clarify the role of the RIOK2 gene in DON-induced cytotoxicity regulation in porcine intestinal epithelial cells (IPEC-J2). Cell viability assay and flow cytometry showed that the knockdown of RIOK2 inhibited proliferation and induced apoptosis, cell cycle arrest, and oxidative stress in DON-induced IPEC-J2. Then, transcriptome profiling identified candidate genes and pathways that closely interacted with both DON cytotoxicity regulation and RIOK2 expression. Furthermore, RIOK2 interference promoted the activation of the MAPK signaling pathway by increasing the phosphorylation of ERK and JNK. Additionally, we performed the dual-luciferase reporter and ChIP assays to elucidate that the expression of RIOK2 was influenced by the binding of transcription factor Sp1 with the promoter region. Briefly, the reduced expression of the RIOK2 gene exacerbates the cytotoxic effects induced by DON in IPEC-J2. Our findings provide insights into the control strategies for DON contamination by identifying functional genes and effective molecular markers.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献