Affiliation:
1. Henan Xj Metering Co., Ltd, Xuchang 450061, Henan, China
2. Hefei University of Technology, Hefei City 230041, Anhui Province, China
Abstract
The popularization of electric vehicles faces problems such as difficulty in charging, difficulty in selecting fast charging locations, and comprehensive consideration of multiple factors and vehicle interactions. With the increasingly mature application of navigation technology in vehicle-road coordination and other aspects, the proposal of an optimal dynamic charging method for electric fleets based on adaptive learning makes it possible for edge computing to process electric fleets to effectively execute the optimal route charging plan. We propose a method of electric vehicle charging service scheduling based on reinforcement learning. First, an intelligent transportation system is proposed, and on this basis a framework for the interaction between fast charging stations and electric vehicles is established. Subsequently, a dynamic travel time model for traffic sections was established. Based on the habits of electric vehicle owners, an electric vehicle charging navigation model and a reinforcement learning reward model were proposed. Finally, an electric vehicle charging navigation scheduling method is proposed to optimize the service resources of the fast charging stations in the area. The simulation results show that the method balances the charging load between stations, can effectively improve the charging efficiency of electric vehicles, and increases user satisfaction.
Subject
General Engineering,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献