Investigation of the Microstructure Characteristics and Deformation Mechanisms of the Carbonaceous Slate under Hydromechanical Coupling

Author:

Yang Hucheng12ORCID,Su Shengrui1ORCID,Li Peng1,Chen Jianxun3

Affiliation:

1. College of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China

2. Department of Architecture and Engineering, Yan’an University, Yan’an 716000, China

3. School of Highway, Chang’an University, Xi’an 710054, China

Abstract

Carbonaceous slate inevitably possesses microscopic pores, microcracks, cleavages, and bedding planes in complex geoenvironment during the diagenesis processes. The microstructure of carbonaceous slate changes apparently under the effects of underground water infiltration, tectonic stress, and engineering disturbance, which induces the large deformation of rock mass and influences the stability of geotechnical engineering projects. To investigate the microstructure characteristics and reveal deformation mechanisms of carbonaceous slate under the influence of water pressure and stress, the variations of the pore size distribution(PSD), connectivity of pores, and porosity of samples during water injection and triaxial compression were studied using multiple methods. The results indicated that voids include plate-like micropores and microcracks, which are discontinuous without external stress. The micropores with a size of less than 1 μm dominate in number. The flaky particles were extruded and bent at a confining pressure, which caused the intermediate pores to form and altered the PSD of the samples. Hence, the connectivity dramatically improved and resulted in increased permeability. Water with dissolved clay minerals and small particles could move between micropores and microcracks during the water injection process. The elastic deformation of the particles recovered, and the intermediate pores disappeared when the imbalanced forces on two sides of the particles were narrowed. Pore water pressure affected the effective stress state and decreased the cohesion and stiffness of the rock. In the lower stress state, the porosity had a certain range of decrease (about 0.2%) mainly due to micropore compression, while the microcrack sprouted and expanded with the increase of compressive stress, resulting in the extension of porosity. The interaction of the stress and water seepage on the slate reduced the rock strength and favored the deformation, leading to a large macrodeformation of the soft rock in the long run.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3