A Slate Tunnel Stability Analysis considering the Influence of Anisotropic Bedding Properties

Author:

Cai Jun1,Du Guangyin1ORCID,Ye Haiwang2,Lei Tao2,Xia Han1ORCID,Pan Huangsong1

Affiliation:

1. Institute of Geotechnical Engineering, Southeast University, Nanjing, Jiangsu 210096, China

2. School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China

Abstract

Bedding planes are the fundamental causes of anisotropic deformation and mechanical behaviors in slate, which will have great influence on tunnel stability. In order to analyse tunnel stability surrounded by slate, well-foliated slate in eastern Guizhou was taken as the specimen in tests. Microscopic analysis and test results show that slate can be regarded as a special continuous material. During the test, shear strength parameters and progressive failure varied when the direction of the bedding plane was changed, and two sets of reasonable shear strength were achieved by fitting. Numerical model verification is conducted before applying, and results indicate that the model can represent the anisotropic failure properties. So the model considering anisotropic shear strength simultaneously is utilized to analyse the tunnel stability in slate. When it is medium dip angle, the tunnel is significantly unstable especially for face and side walls, and at 45° (dip angle), the plastic zone depth ahead of the tunnel face can be the largest, being 1.7 times the tunnel height. The maximum deviator stress (σ1 − σ3) is centralized on the middle of the side wall, and also, the stress (σ1 − σ3) is the highest at 45° (dip angle), which will lead to shear failure.

Funder

China Guizhou Science and Technology Planning Project

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3