Using Internet Search Trends and Historical Trading Data for Predicting Stock Markets by the Least Squares Support Vector Regression Model

Author:

Pai Ping-Feng1ORCID,Hong Ling-Chuang1,Lin Kuo-Ping23

Affiliation:

1. Department of Information Management, National Chi Nan University, 1 University Rd., Puli, Nantou 54561, Taiwan

2. Department of Information Management, Lunghwa University of Science and Technology, No. 300 Sec. 1, Wanshou Rd., Guishan District, Taoyuan 33306, Taiwan

3. Institute of Innovation and Circular Economy, Asia University, Taichung 41354, Taiwan

Abstract

Historical trading data, which are inevitably associated with the framework of causality both financially and theoretically, were widely used to predict stock market values. With the popularity of social networking and Internet search tools, information collection ways have been diversified. Instead of only theoretical causality in forecasting, the importance of data relations has raised. Thus, the aim of this study was to investigate performances of forecasting stock markets by data from Google Trends, historical trading data (HTD), and hybrid data. The keywords employed for Google Trends are collected from three different ways including users’ definitions (GTU), trending searches of Google Trends (GTTS), and tweets (GTT) correspondingly. The hybrid data include Internet search trends from Google Trends and historical trading data. In addition, the correlation-based feature selection (CFS) technique is used to select independent variables, and one-step ahead policy is adopted by the least squares support vector regression (LSSVR) for predicting stock markets. Numerical experiments indicate that using hybrid data can provide more accurate forecasting results than using single historical trading data or data from Google Trends. Thus, using hybrid data of Internet search trends and historical trading data by LSSVR models is a promising alternative for forecasting stock markets.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3