A Hybrid Model to Predict Stock Closing Price Using Novel Features and a Fully Modified Hodrick–Prescott Filter

Author:

Ilyas Qazi MudassarORCID,Iqbal KhalidORCID,Ijaz Sidra,Mehmood AbidORCID,Bhatia SurbhiORCID

Abstract

Forecasting stock market prices is an exciting knowledge area for investors and traders. Successful predictions lead to high financial revenues and prevent investors from market risks. This paper proposes a novel hybrid stock prediction model that improves prediction accuracy. The proposed method consists of three main components, a noise-filtering technique, novel features, and machine learning-based prediction. We used a fully modified Hodrick–Prescott filter to smooth the historical stock price data by removing the cyclic component from the time series. We propose several new features for stock price prediction, including the return of firm, return open price, return close price, change in return open price, change in return close price, and volume per total. We investigate traditional and deep machine learning approaches for prediction. Support vector regression, auto-regressive integrated moving averages, and random forests are used for conventional machine learning. Deep learning techniques comprise long short-term memory and gated recurrent units. We performed several experiments with these machine learning algorithms. Our best model achieved a prediction accuracy of 70.88%, a root-mean-square error of 0.04, and an error rate of 0.1.

Funder

The Saudi Investment Bank Chair for Investment Awareness Studies

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference48 articles.

1. Analysis of market efficiency and fractal feature of NASDAQ stock exchange: Time series modeling and forecasting of stock index using ARMA-GARCH model

2. Artificial Neural Network-Based Machine Learning Approach to Stock Market Prediction Model on the Indonesia Stock Exchange during the COVID-19;Sukono;Eng. Lett.,2022

3. A comprehensive survey on deep neural networks for stock market: The need, challenges, and future directions

4. Blockchain-Based Attack Detection on Machine Learning Algorithms for IoT-Based e-Health Applications

5. Determinants and Prediction of the Stock Market during COVID-19: Evidence from Indonesia;Goh;J. Asian Financ. Econ. Bus.,2021

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3