Affiliation:
1. Fundación Valle del Lili, Departamento de Endocrinología, Cali, Colombia
2. Universidad Icesi, Facultad de Ciencias de la Salud, Cali, Colombia
3. Universidad del Valle, Cali, Colombia
4. Universidad del Valle, School of Computer Science and Systems Engineering, Cali, Colombia
Abstract
Artificial intelligence techniques have been positioned in the resolution of problems in various areas of healthcare. Clinical decision support systems developed from this technology have optimized the healthcare of patients with chronic diseases through mobile applications. In this study, several models based on this methodology have been developed to calculate the basal insulin dose in patients with type I diabetes using subcutaneous insulin infusion pumps. Methods. A pilot experimental study was performed with data from 56 patients with type 1 diabetes who used insulin infusion pumps and underwent continuous glucose monitoring. Several models based on artificial intelligence techniques were developed to analyze glycemic patterns based on continuous glucose monitoring and clinical variables in order to estimate the basal insulin dose. We used neural networks (NNs), Bayesian networks (BNs), support vector machines (SVMs), and random forests (RF). We then evaluated the agreement between predicted and actual values using several statistical error measurements: mean absolute error (MAE), mean square error (MSE), root-mean-square error (RMSE), Pearson’s correlation coefficient (R), and determination coefficient (R2). Results. Twenty-four different models were obtained, one for each hour of the day, with each chosen technique. Correlation coefficients obtained with RF, SVMs, NNs, and BNs were 0.9999, 0.9921, 0.0303, and 0.7754, respectively. The error increased between 06:00 and 07:00 and between 13:00 and 17:00. Conclusions. The performance of the RF technique was excellent and got very close to the actual values. Intelligence techniques could be used to predict basal insulin dose. However, it is necessary to explore the validity of the results and select the target population. Models that allow for more accurate levels of prediction should be further explored.
Subject
Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献