Blood Glucose Level Estimation Using Photoplethysmography (PPG) Signals with Explainable Artificial Intelligence Techniques

Author:

Adigüzel Gökhan1ORCID,Şentürk Ümit1ORCID,Polat Kemal1ORCID

Affiliation:

1. BOLU ABANT İZZET BAYSAL ÜNİVERSİTESİ

Abstract

Estimating blood sugar levels is a critical task in effective diabetes management. This study focuses on leveraging the power of machine learning models such as CatBoost, XGBoost, and Extra Trees Regressor, along with explainable AI techniques like SHAP values and confusion matrices, to predict blood sugar levels using Photoplethysmography (PPG) signals. The dataset used in this research is carefully selected for glucose prediction from PPG signals and consists of data from 217 individuals. Information for each individual includes laboratory glucose measurements and approximately one minute of recorded finger PPG signals. Among the various machine learning models tested, CatBoost emerged as the best-performing model in predicting blood sugar levels. The CatBoost model demonstrated its efficiency and accuracy in glucose level predictions by achieving an impressive coefficient of determination (R2) of 0.7191 and a mean absolute error (MAE) of 25.21. Feature importance analysis highlighted the significance of specific features like median deviation and kurtosis in the predictive model built with CatBoost, emphasizing their critical role in determining blood sugar levels. The inclusion of explainable AI techniques enhanced the interpretability and transparency of predictive models. In conclusion, this research underscores the potential of machine learning-based approaches in predicting blood sugar levels from PPG signals. By leveraging advanced models like CatBoost and utilizing explainable AI methods, this study paves the way for improved diabetes management through accurate, non-invasive, and data-driven predictive methodologies.

Publisher

Open Journal of Nano

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3