Affiliation:
1. BOLU ABANT İZZET BAYSAL ÜNİVERSİTESİ
Abstract
Estimating blood sugar levels is a critical task in effective diabetes management. This study focuses on leveraging the power of machine learning models such as CatBoost, XGBoost, and Extra Trees Regressor, along with explainable AI techniques like SHAP values and confusion matrices, to predict blood sugar levels using Photoplethysmography (PPG) signals. The dataset used in this research is carefully selected for glucose prediction from PPG signals and consists of data from 217 individuals. Information for each individual includes laboratory glucose measurements and approximately one minute of recorded finger PPG signals. Among the various machine learning models tested, CatBoost emerged as the best-performing model in predicting blood sugar levels. The CatBoost model demonstrated its efficiency and accuracy in glucose level predictions by achieving an impressive coefficient of determination (R2) of 0.7191 and a mean absolute error (MAE) of 25.21. Feature importance analysis highlighted the significance of specific features like median deviation and kurtosis in the predictive model built with CatBoost, emphasizing their critical role in determining blood sugar levels. The inclusion of explainable AI techniques enhanced the interpretability and transparency of predictive models. In conclusion, this research underscores the potential of machine learning-based approaches in predicting blood sugar levels from PPG signals. By leveraging advanced models like CatBoost and utilizing explainable AI methods, this study paves the way for improved diabetes management through accurate, non-invasive, and data-driven predictive methodologies.
Reference48 articles.
1. International Diabetes Federation. (IDF 2009c). Diabetes Prevalence. Online Access
http://www.idf.org/home/index.cfm?node=264 (Acces:12.05.2009)
2. Diyabet Çığ Gibi Büyüyor. (2008). Diyabete Bakış, 7, 6-7.
3. K. Wikblad, L. Wibell, , K. Montin (1990). “The Patient's Experience Of Diabetes And Its Treatment: Construction Of An Attitude Scale By A Semantic Differential Technique.” Journal Of Advanced Nursing, 15(9), 1083-1091.
4. American Diabetes Association. Diagnosis and classification of diabetes mellitus, Diabetes Care, 32 (1), 62–67, 2009.
5. O. Sevli. Diyabet hastalığının farklı sınıflandırıcılar kullanılarak teşhisi, Journal of the Faculty of Engineering and Architecture of Gazi University, 38:2 (2023) 989-1001