Machine Learning Based Antenna Design for Physical Layer Security in Ambient Backscatter Communications

Author:

Hong Tao1ORCID,Liu Cong1ORCID,Kadoch Michel2ORCID

Affiliation:

1. School of Electronics and Information Engineering, Beihang University, China

2. Department of Electrical Engineering, École de Technologie Supérieure, University of Quebec, Canada

Abstract

Ambient backscatter employs existing radio frequency (RF) signals in the environment to support sustainable and independent communications, thereby providing a new set of applications that promote the Internet of Things (IoT). However, nondirectional forms of communication are prone to information leakage. In order to ensure the security of the IoT communication system, in this paper, we propose a machine learning based antenna design scheme, which achieves directional communication from the relay tag to the receiving reader by combining patch antenna with log-periodic dual-dipole antenna (LPDA). A multiobjective genetic algorithm optimizes the antenna side lobe, gain, standing wave ratio, and return loss, with a goal of limiting the number of large side lobes and reduce the side lobe level (SLL). The simulation results demonstrate that our proposed antenna design is well suited for practical applications in physical layer security communication, where signal-to-noise ratio of the wiretap channel is reduced, communication quality of the main channel is ensured, and information leakage is prevented.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physical Layer Security Beamforming Design via Deep Unfolding;2024 IEEE International Mediterranean Conference on Communications and Networking (MeditCom);2024-07-08

2. 6G Wireless Communication Networks;International Journal of Business Data Communications and Networking;2024-03-07

3. The State of AI-Empowered Backscatter Communications: A Comprehensive Survey;IEEE Internet of Things Journal;2023-12-15

4. Machine learning-based technique for gain and resonance prediction of mid band 5G Yagi antenna;Scientific Reports;2023-08-03

5. Anomaly Detection in 6G Networks Using Machine Learning Methods;Electronics;2023-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3