Genotype Selection from Azide‐Induced Rice Mutants Using Multitrait Genotype–Ideotype Distance Index (MGIDI): Unveiling Promising Variants for Yield Improvement

Author:

Al Mamun S. M. AbdullahORCID,Ivy Nasrin AkterORCID,Khan Mohammad Ashik IqbalORCID,Rehana SaydaORCID,Sultana Mst. SabihaORCID,Adhikary Sanjoy KumarORCID,Islam Md. MonirulORCID

Abstract

Development of high‐yielding rice (Oryza sativa L.) is a crucial need for succeeding food security that needs the presence of great genetic variability to be used in breeding programs. Creating new variants through sodium azide mutagenesis can be a better alternative in advancing plant breeding issues. The generation and characterization of mutants represent an effective method for choosing genotypes with desired attributes. In this study, we focused on inducing mutations in the genetic base of a mega rice variety (BRRI dhan28) using sodium azide, evaluating the genetic diversity of the mutants, and identifying promising genotypes among the mutants using quantitative trait analysis and genetic criteria. The mutants exhibited substantial variation, as evidenced by descriptive statistics and analysis of variance. The estimated heritability and genetic advance indicated that nearly all traits had a high level of heritability and followed a complex pattern of inheritance. The strong correlations observed between grain yield and flag leaf length, branch panicle−1, grain panicle−1, 100‐grain weight, straw yield hill−1, and harvest index indicate that prioritizing these traits during selection could substantially improve other desirable characteristics. Additionally, we employed the principal component analysis which revealed that the first two components collectively accounted for 32.16% of the total variation, providing essential information about the genetic relatedness of the mutants. The Multitrait Genotype–Ideotype Distance Index (MGIDI) analysis revealed that out of 100 mutants, only eight exhibited noteworthy performance. These findings provide insights into the efficiency of azide in creating genetic variations in rice traits and offer valuable resources for future breeding programs aimed at developing high‐performing rice varieties.

Funder

Ministry of Education, Government of the People's Republic of Bangladesh

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3