Simulation and Analysis of GaN Wafer Bowing on Sapphire Substrate

Author:

Bin Wang1,Yu-xuan Qu2,Shi-gang Hu3,Zhi-jun Tang3,Jin Li3,Ying-lu Hu4

Affiliation:

1. The Center of Coordination and Support of State Administration of Science, Technology and Industry for National Defence, Beijing 100081, China

2. Advanced Technology Generalization Institute of CNGC, Beijing 100089, China

3. School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

4. The 41st Institute of China Electronics Technology Group Corporation, Qingdao 266555, China

Abstract

During the process of heteroepitaxial growth, if the lattice constant of the growing film differs from that of the substrate, the wafer surface bows, regardless of whether the lattice mismatch occurs or not. As the growth in large-scale wafers speeds up, bowing effects are becoming more and more important. Wafer bowing has a direct impact on the yield in modern mass-production compound semiconductor industries. By using finite element analysis software, the bowing deformation of the GaN wafer on sapphire substrate can be studied. This paper summarizes the causes of bowing deformation, builds the mathematical model, and deduces the relation equation of the wafer bowing. The results show that epitaxial wafer bowing has a linear relationship with the square of the diameter of the substrate but has little relationship with the thickness of the substrate. Moreover, the relation equation of the wafer bowing is also simplified finally.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3