Affiliation:
1. School of Physical Education, Liaoning Normal University, Dalian 116029, China
Abstract
There are many factors that affect athletes’ sports performance in sports competitions. The traditional sports performance prediction method is difficult to obtain more accurate sports performance prediction results and corresponding data analysis in a short time, which is not conducive for coaches to formulate targeted and scientific training sprint plans for athletes’ problems. Therefore, based on GA-BP neural network algorithm, this paper constructs a sports performance prediction model and carries out experiments and analysis. The experimental results show that GA-BP neural network algorithm has a faster convergence speed than BP neural network and can achieve the expected error accuracy in a shorter time, which overcomes the problems of the BP neural network. At the same time, different from the previous models, GA-BP neural network algorithm can get the athlete training model according to the relationship between quality training indicators and special sports training results, which can more intuitively show the advantages and disadvantages of athletes. In the final sports performance prediction results, GA-BP neural network prediction results have higher accuracy, better stability, better prediction effect, and higher application value than BP neural network.
Funder
Liaoning Social Science Planning Fund Project
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献