Research on Hotspot Discovery in Internet Public Opinions Based on Improved -Means

Author:

Wang Gensheng1ORCID

Affiliation:

1. Electronic Business Department, Jiangxi University of Finance and Economics, Nanchang 330013, China

Abstract

How to discover hotspot in the Internet public opinions effectively is a hot research field for the researchers related which plays a key role for governments and corporations to find useful information from mass data in the Internet. An improved -means algorithm for hotspot discovery in internet public opinions is presented based on the analysis of existing defects and calculation principle of original -means algorithm. First, some new methods are designed to preprocess website texts, select and express the characteristics of website texts, and define the similarity between two website texts, respectively. Second, clustering principle and the method of initial classification centers selection are analyzed and improved in order to overcome the limitations of original -means algorithm. Finally, the experimental results verify that the improved algorithm can improve the clustering stability and classification accuracy of hotspot discovery in internet public opinions when used in practice.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference11 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Securing confidential data in the cloud environment by using DNA computing;Perspective of DNA Computing in Computer Science;2023

2. An Improved HotSpot Algorithm and Its Application to Sandstorm Data in Inner Mongolia;Mathematical Problems in Engineering;2020-04-10

3. Using Hotspot Information to Evaluate Citizen Satisfaction in E-Government;International Journal of Public Administration in the Digital Age;2020-01

4. Research on clustering analysis of Internet public opinion;Cluster Computing;2018-01-19

5. Short-term wind power prediction based on LSSVM–GSA model;Energy Conversion and Management;2015-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3