Affiliation:
1. School of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Abstract
HotSpot is an algorithm that can directly mine association rules from real data. Aiming at the problem that the support threshold in the algorithm cannot be set accurately according to the actual scale of the dataset and needs to be set artificially according to experience, this paper proposes a dynamic optimization algorithm with minimum support threshold setting: S_HotSpot algorithm. The algorithm combines simulated annealing algorithm with HotSpot algorithm and uses the global search ability of simulated annealing algorithm to dynamically optimize the minimum support in the solution space. Finally, the Inner Mongolia sandstorm dataset is used for experiment while the wine quality dataset is used for verification, and the association rules screening indicators are set for the mining results. The results show that S_HotSpot algorithm can not only dynamically optimize the selection of support but also improve the quality of association rules as it is mining reasonable number of rules.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献