Remaining Useful Life Prediction of Milling Tool Based on Pyramid CNN

Author:

Hu Ning12ORCID,Liu Zhenguo12ORCID,Jiang Shixin12ORCID,Li Quanzhou12ORCID,Zhong Shuqi12ORCID,Chen Bingquan12ORCID

Affiliation:

1. China Electronic Product Reliability and Environmental Test Institute, Guangzhou 510610, China

2. Key Laboratory of Industrial Equipment Quality Big Data, MIIT, Guangzhou 510610, China

Abstract

Remaining useful life prediction of a milling tool is one of the determinants in making scientific maintenance decision for the CNC machine tool. Predicting the RUL accurately can improve machining efficiency and the quality of product. Deep learning methods have strong learning capability in RUL prediction and are extensively used. Multiscale CNN, a typical deep learning model in RUL prediction, has a large number of parameters because of its parallel convolutional pathways, resulting in high computing cost. Besides, the MSCNN ignores various influences of different scales of degradation features on RUL prediction accuracy. To address the issue, a pyramid CNN (PCNN) is proposed for RUL prediction of the milling tool in this paper. Group convolution is used to replace parallel convolutional pathways to extract multiscale features without additional large number of parameters. And the channel attention with soft assignment is used to select the key degradation features, considering different sensors and scales. The milling tool wear experiments show that the score value of the proposed method achieved 51.248 ± 1.712 and the RMSE achieved 19.051 ± 0.804, confirming better performance of the proposed method compared with the traditional MSCNN and other deep learning methods. Besides, the number of parameters of the proposed method is reduced by 62.6% and 54.8% compared with the MSCNN with self-attention and the MSCNN methods, confirming its lower computing cost.

Funder

Key Research and Development Projects in Guangdong Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3