Hybrid Depth-Separable Residual Networks for Hyperspectral Image Classification

Author:

Zhao Cuijie12,Zhao Hongdong1ORCID,Wang Guozhen3,Chen Hong1

Affiliation:

1. College of Electronic Information Engineering, Hebei University of Technology, Tianjin 300401, China

2. Tianjin University of Finance and Economics, Pearl River College, Tianjin 301811, China

3. Department of Computer Science and Technology, Tianjin University Renai College, Tianjin 300000, China

Abstract

At present, the classification of the hyperspectral image (HSI) based on the deep convolutional network has made great progress. Due to the high dimensionality of spectral features, limited samples of ground truth, and high nonlinearity of hyperspectral data, effective classification of HSI based on deep convolutional neural networks is still difficult. This paper proposes a novel deep convolutional network structure, namely, a hybrid depth-separable residual network, for HSI classification, called HDSRN. The HDSRN model organically combines 3D CNN, 2D CNN, multiresidual network ROR, and depth-separable convolutions to extract deeper abstract features. On the one hand, due to the addition of multiresidual structures and skip connections, this model can alleviate the problem of over fitting, help the backpropagation of gradients, and extract features more fully. On the other hand, the depth-separable convolutions are used to learn the spatial feature, which reduces the computational cost and alleviates the decline in accuracy. Extensive experiments on the popular HSI benchmark datasets show that the performance of the proposed network is better than that of the existing prevalent methods.

Funder

Foundation of Science and Technology on Electro-Optical Information Security Control Laboratory

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3